Background: An ultra-low Q value β-decay can occur from a parent nuclide to an excited nuclear state in the daughter such that QUL 1 keV. These decay processes are of interest for nuclear β-decay theory and as potential candidates in neutrino mass determination experiments. To date, only one ultra-low Q value β-decay has been observed-that of 115 In with Q β = 147(10) eV. A number of other potential candidates exist, but improved mass measurements are necessary to determine if these decay channels are energetically allowed and, in fact, ultra-low.Purpose: To perform precise β-decay Q value measurements of 112,113 Ag and 115 Cd and to use them in combination with nuclear energy level data for the daughter isotopes 112,113 Cd and 115 In to determine if the potential ultra-low Q value β-decay branches of 112,113 Ag and 115 Cd are energetically allowed and 1 keV.
Method:The Canadian Penning Trap at Argonne National Laboratory was used to measure the cyclotron frequency ratios of singly-charged 112,113 Ag and 115 Cd ions with respect to their daughters 112,113 Cd and 115 In. From these measurements, the ground-state to ground-state β-decay Q values were obtained. Results: The 112 Ag → 112 Cd, 113 Ag → 113 Cd, and 115 Cd → 115 In β-decay Q values were measured to be Q β ( 112 Ag) = 3990.16(22) keV, Q β ( 113 Ag) = 2085.7(4.6) keV, and Q β ( 115 Cd) = 1451.36(34) keV. These results were compared to energies of excited states in 112 Cd at 3997.75(14) keV, 113 Cd at 2015.6(2.5) and 2080(10) keV, and 115 In at 1448.787(9) keV, resulting in precise QUL values for the potential decay channels of -7.59(26) keV, 6(11) keV, and 2.57(34) keV, respectively.
Conclusion:The potential ultra-low Q value decays of 112 Ag and 115 Cd have been ruled out. 113 Ag is still a possible candidate until a more precise measurement of the 2080(10) keV, 1/2 + state of 113 Cd is available. In the course of this work we have found the ground state mass of 113 Ag reported in the 2020 Atomic Mass Evaluation [Wang, et al., Chin. Phys. C 45, 030003 (2021)] to be lower than our measurement by 69(17) keV (a 4σ discrepancy).