Radiation exposure is a primary concern in emergency response scenarios and long-term health assessments. Accurate quantification of radiation doses is critical for informed decision-making and patient care. This paper reviews the dose reconstruction technique using both X- and Q-bands, with tooth enamel as a reliable dosimeter. Tooth enamel, due to its exceptional resistance to alteration over time, offers a unique opportunity for assessing both acute and chronic radiation exposures. This review delves into the principles underlying enamel dosimetry, the mechanism of radiation interactions, and dose retention in tooth enamel. We explore state-of-the-art analytical methods, such as electron paramagnetic resonance (EPR) spectroscopy, that accurately estimate low and high doses in acute and chronic exposure. Furthermore, we discuss the applicability of tooth enamel dosimetry in various scenarios, ranging from historical radiological incidents to recent nuclear events or radiological incidents. The ability to reconstruct radiation doses from dental enamel provides a valuable tool for epidemiological studies, validating the assessment of health risks associated with chronic exposures and aiding in the early detection and management of acute radiation incidents. This paper underscores the significance of tooth enamel as an essential medium for radiation dose reconstruction and its broader implications for enhancing radiation protection, emergency response, and public health preparedness. Incorporating enamel EPR dosimetry into standard protocols has the potential to transform the field of radiation assessment, ensuring more accurate and timely evaluations of radiation exposure and its associated risks.