In recent times, the evolution of cationic polymerization has taken a multidirectional approach, with the development of cationic reversible addition−fragmentation chain transfer (RAFT) polymerization. In contrast to the conventional cationic polymerization methods, which were typically carried out under inert atmospheres and low temperatures, various novel polymerization techniques have been developed where the reactions are carried out in open air, operate at room temperature, are cost-effective, and are environmentally friendly. Besides, several external stimuli, such as heat, light, chemicals, electrical potential, etc. have been employed to activate and control the polymerization process. It also enables the combination of cationic polymerization with other polymerization methods in a single reaction vessel, eliminating the necessity for isolation and purification during intermediate steps. In addition, significant advancements have been made through various modifications in catalyst systems, resulting in polymers with an exceptionally high level of stereoregularity. This review article comprehensively analyses the recent developments in cationic polymerization, encompassing their applications and offering insights into future perspectives.