Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The repair of pathological gene variants is an ultimate aim for treating genetic diseases; however, it is not practical to develop different therapeutic reagents for each of the many variants that can occur in a gene. Here, we investigated whether base editing to induce a gain-of-function variant in blood coagulation factor IX (FIX) can increase FIX activity as a treatment strategy for hemophilia B. We engineered a G:C to A:T substitution at c.1151 of F9 by cytosine base editing to generate R338Q, known as the Shanghai F9 variant, which markedly potentiates coagulation factor activity. An adeno-associated virus vector harboring the base editor converted more than 60% of the target G:C to A:T and increased FIX activity in HEK293 cells harboring patient-derived F9 variants, as well as in knock-in mice harboring a human F9 cDNA. Furthermore, administration of lipid nanoparticles embedded with the base editor mRNA and gRNA increased FIX activity in mice. These data indicate that cytosine base editing to generate R338Q in FIX can become a universal genome editing strategy for hemophilia B.
The repair of pathological gene variants is an ultimate aim for treating genetic diseases; however, it is not practical to develop different therapeutic reagents for each of the many variants that can occur in a gene. Here, we investigated whether base editing to induce a gain-of-function variant in blood coagulation factor IX (FIX) can increase FIX activity as a treatment strategy for hemophilia B. We engineered a G:C to A:T substitution at c.1151 of F9 by cytosine base editing to generate R338Q, known as the Shanghai F9 variant, which markedly potentiates coagulation factor activity. An adeno-associated virus vector harboring the base editor converted more than 60% of the target G:C to A:T and increased FIX activity in HEK293 cells harboring patient-derived F9 variants, as well as in knock-in mice harboring a human F9 cDNA. Furthermore, administration of lipid nanoparticles embedded with the base editor mRNA and gRNA increased FIX activity in mice. These data indicate that cytosine base editing to generate R338Q in FIX can become a universal genome editing strategy for hemophilia B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.