In this work, three amino acids derived (L-leucinol, L-isoleucinol and L-valinol) sulfated chiral surfactants are synthesized and polymerized. These chiral sulfated surfactants are thoroughly characterized to determine critical micelle concentration, aggregation number, polarity, optical rotation and partial specific volume. For the first time the morphological behavior of polymeric sulfated surfactants is revealed using cryogenic high-resolution electron microscopy (cryo-HRSEM). The polysodium N-undecenoyl-L-leucine sulfate (poly-L-SUCLS) shows distinct tubular structure, while polysodium N-undecenoyl-L-valine sulfate (poly-L-SUCVS) also shows tubular morphology but without any distinct order of the tubes. On the other hand, polysodium N-undecenoyl-Lisoleucine sulfate (poly-L-SUCILS) displays random distribution of coiled/curved filaments with heavy association of tightly and loosely bound water. All three polymeric sulfated surfactants are compared for enantio-separation of broad range of structurally diverse racemic compounds at very acidic, neutral and basic pH conditions in micellar electrokinetic chromatography (MEKC). A small combinatorial library of 10 structurally related phenylethylamines (PEAs) is investigated for chiral separation under acidic and moderately acidic to neutral pH conditions using an experimental design. In contrast to neutral pH conditions, at acidic pH, significantly enhanced chiral resolution is obtained for class I and class II PEAs due to the compact structure of polymeric sulfated surfactants. It is observed that the presence of hydroxy group on the benzene ring of PEAs resulted in deterioration of enantioseparation. A sensitive MEKC-mass spectrometry (MS) method is developed for one of the PEA (e.g., (±)-pseudoephedrine) in human urine. Very low limit of detection (LOD) is obtained at pH 2.0 (LOD 325 ng/mL), which is ca 16 times better compared to pH 8.0 (LOD 5.2 µg/mL). Other broad range of chiral analytes (β-blockers, phenoxypropionic acid, benzoin derivatives, PTHamino acids, and benzodiazepinones) studied also provided improved chiral separation at low pH compared to high pH conditions. Among the three polymeric sulfated surfactants, poly-L-SUCILS with two chiral centers on the polymer head group provided overall higher enantioresolution for the investigated acidic, basic and neutral compounds. This work clearly demonstrates for the first time the superiority of chiral separation and sensitive MS detection at low pH over conventional high pH chiral separation and detection employing anionic chiral polymeric surfactants in MEKC and MEKC-MS.
NIH-PA Author ManuscriptNIH-PA Author Manuscript
NIH-PA Author ManuscriptOver the last 20 years, the number of materials and products developed as pure enantiomers (eutomer) has continued to increase. With evidence of problems related to stereoselectivity in drug action, enantioselective analysis by separation are of particular importance for production, therapeutic monitoring or pharmacokinetic studies, and/or to validate the opt...