Janus films with asymmetric properties on opposite sides have been widely used to facilitate energy storage, ion transport, nanofiltration, and responsive bending. However, studies on Janus films rarely involve controlling surface adhesion, either dry or wet adhesion. Herein, we report Janus adhesive tape with an asymmetrically crosslinked polydimethylsiloxane (PDMS) network prepared through an interfacial hydrosilylation strategy, realizing wet/dry amphibious adhesion on various solid surfaces. The lightly crosslinked side of the Janus adhesive tape acts as an adhesive layer with high adhesion, and the highly crosslinked side functions as a supporting layer with high mechanical strength. This Janus adhesive tape with good adhesion and mechanical properties can be dyed different colors and can act as an underwater adhesive and a skin adhesive for wearable electronic devices. This study provides a promising design model for next-generation adhesive materials and related applications.