We report the Magnetospheric Multiscale (MMS) observation of a bifurcated reconnecting current sheet in Earth’s dayside magnetosheath. Typical signatures of the ion diffusion region, including sub-Alfvénic demagnetized ion outflow, super-Alfvénic electron flows, Hall magnetic fields, electron heating, and energy dissipation, were found when MMS traversed the current sheet. The weak ion exhaust at the current sheet center was bounded by two current peaks in which super-Alfvénic electron flow directed toward and away from the X line were observed, respectively. Both off-center current peaks were primarily carried by electrons, one of which was supported by field-aligned current, while the other was mainly supported by current driven by electric field drift. The two current peaks also exhibit other differences, including electron heating, electron pitch angle distributions, electron nongyrotropy, energy dissipation, and magnetic field curvature. An ion-scale magnetic flux rope was detected between the two current peaks where electrons showed field-aligned bidirectional distribution, in contrast to field-aligned distribution parallel to the magnetic field in two current peaks. The observed current sheet was embedded in a background shear flow. This shear flow worked together with the guide field and asymmetric field and density to affect the electron dynamics. Our results reveal the reconnection properties in this special plasma and field regime which may be common in turbulent environments.