Older individuals and people with HIV (PWH) were prioritized for COVID-19 vaccination, yet comprehensive studies of the immunogenicity of these vaccines and their effects on HIV reservoirs are not available. We followed 68 PWH aged 55 and older and 23 age-matched HIV-negative individuals for 48 weeks from the first vaccine dose, after the total of three doses. All PWH were on antiretroviral therapy (cART) and had different immune status, including immune responders (IR), immune non-responders (INR), and PWH with low-level viremia (LLV). We measured total and neutralizing Ab responses to SARS-CoV-2 spike and RBD in sera, total anti-spike Abs in saliva, frequency of anti-RBD/NTD B cells, changes in frequency of anti-spike, HIV gag/nef-specific T cells, and HIV reservoirs in peripheral CD4+ T cells. The resulting datasets were used to create a mathematical model for within-host immunization. Various regimens of BNT162b2, mRNA-1273, and ChAdOx1 vaccines elicited equally strong anti-spike IgG responses in PWH and HIV-negative participants in serum and saliva at all timepoints. These responses had similar kinetics in both cohorts and peaked at 4 weeks post-booster (third dose), while half-lives of plasma IgG also dramatically increased post-booster in both groups. Salivary spike IgA responses were low, especially in INRs. PWH had diminished live virus neutralizing titers after two vaccine doses which were 'rescued' after a booster. Anti-spike T cell immunity was enhanced in IRs even in comparison to HIV-negative participants, suggesting Th1 imprinting from HIV, while in INRs it was the lowest. Increased frequency of viral 'blips' in PWH were seen post-vaccination, but vaccines did not affect the size of the intact HIV reservoir in CD4+ T cells in most PWH, except in LLVs. Thus, older PWH require three doses of COVID-19 vaccine to maximize neutralizing responses against SARS-CoV-2, although vaccines may increase HIV reservoirs in PWH with persistent viremia.