This paper presents the preparation and characterization of bentonite coated with hydroxide double lamellar Mg/Al-bentonite and Zn/Al-bentonite as a potential adsorbent material. The coating process involved co-precipitation of mixed metal nitrate solution (Mg-Al) or (Zn-Al), followed by immersion of bentonite (B-Na+) dispersion. The structures and morphologies of the coated bentonites were characterized using XRD, FTIR, BET, and SEM analysis. The results of the BET analysis indicate that Mg/Al-bentonite and Zn/Al-bentonite have larger surface areas and pore volumes compared to bentonite alone. Specifically, the surface area of Mg/Al-bentonite is 209.25 m2/g with a pore volume of 0.423 cm3/g, while Zn/Al-bentonite has a surface area of 175.95 m2/g and a pore volume of 0.313 cm3/g. In contrast, the surface area and pore volume of bentonite alone are 110.43 m2/g and 0.132 cm3/g, respectively. The Mg/Al-bentonite reaches 85% uptake within 3 h (equivalent to 724.20 mg/g at 25 °C and pH 7), achieving rapid equilibrium. In contrast, the Zn/Al-bentonite achieves a maximum adsorption of 74% within 5 h under identical pH and temperature conditions, corresponding to 650.34 mg/g. The error function values, including the correlation coefficient R2, chi-square test χ2, and residual sum of squares RSS, were calculated to evaluate both kinetic and isotherm models. The kinetic adsorption data agreed well with a pseudo-second-order model. The adsorption process followed the Sips isotherm model, and the monolayer adsorption capacity of Mg/Al-bent and Zn/Al-bent composites was 872.41 (R2 = 0.974) and 678.45 mg/g (R2 = 0.983), respectively. The thermodynamic analysis of the adsorption process revealed that it occurred spontaneously with an endothermic characteristic. The parameters ΔS, ΔH, and ΔG were used to determine this.