Recent research demonstrates the viability of organic electrochemical transistors (OECTs) as an emergent technology for biosensor applications. Herein, a comprehensive summary is provided, highlighting the significant progress and most notable advances within the field of OECTâbased biosensors. The working principles of an OECT are detailed, with specific attention given to the current library of organic mixed ionicâelectronic conductor (OMIEC) channel materials utilized in OECT biosensors. The application of OECTs for metabolite, ion, neuromorphic, electrophysiological, and virus sensing as well as immunosensing is reported, detailing the breadth and scope of OECTâbased biosensors. Furthermore, an outlook and perspective on synthetic molecular design of future channel materials, specifically designed for OECT biosensors, is provided. The development of optimized channel materials, creative device architectures, and operational nuances will set the stage for OECTâbased biosensors to thrive and accelerate their clinical prevalence in the near future.