Rain-triggered landslides frequently threaten public safety, infrastructure, and the economy during typhoon seasons in Zhejiang Province. Landslides are complex structural systems, and the subsurface features play a significant role in their stability. Their early identification and the evaluation of potential danger in terms of the rupture surface and unstable body are essential for geohazard prevention and protection. However, the information about the subsurface acquired by conventional exploration approaches is generally limited to sparse data. This paper describes a joint application of ground-penetrating radar (GPR) with a 100 MHz antenna and the electrical resistivity tomography (ERT) method with the Wenner configuration to identify the stratum structure and delineate the potentially unstable body of a clay-rich slope, the results of which were further verified using borehole data and field observation. The acquired results from the GPR and ERT surveys, consistent with each other, indicate two stratigraphic layers comprising silty clay and silty mudstone. Moreover, the potential rupture zone very likely exists in the highly weathered mudstone in the depth range of 3–7 m, and the average depth is 5 m. In addition, the thickness of the unstable mass is greater on the east and crest parts of the slope. Conclusively, the optimum combination of ERT and GPR is reliable for conducting rapid and effective delineation of subsurface characteristics of clayey slopes for risk assessment and mitigation during the typhoon season.