The flavor of fresh onion and its processed products is an important index with which to evaluate its quality. In this study, the highly volatile compounds of onion with different fresh-cut styles (bulb, ring, and square) and different storage temperatures (4 °C, 20 °C, and 25 °C) were characterized at the molecular level, focusing in particular on the volatile sulfur compounds. Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid-phase microextraction-gas chromatography−mass spectrometry (HS-SPME-GC-MS) were employed. A total of 14 highly volatile compounds were identified in onion samples by HS-GC-IMS, and the square sample contained more volatile components. (E,E)-2,4-heptadianal, ethyl acetate, 2-methyl-1-pentanol, 2-pentylfuran, propyl acetate, and 2,6-dimethylpyrazine were produced in the ring and square samples when stored at higher temperatures, while pentanal, 2-heptenal, hexanal were decreased after cutting. Simultaneously, 16 sulfur compounds were identified in onions by HS-SPME-GC-MS. The sulfur compounds profile of the bulbs was significantly different from that of the rings and squares at any temperature. When stored at a low temperature (4 °C), cutting onions into a ring or square shape produced more sulfur. However, at higher temperatures (20 °C and 25 °C), fresh-cutting decreased the sulfur concentration. The total content of sulfur compounds was higher in the same cut style stored at higher temperatures (20 °C or 25 °C). 2-Mercapto-3,4-dimethyl-2,3-dihydrothiophene and 2,4-dimethylthiophene were formed during storage; however, (E)-1-(prop-1-en-1-yl)-3-propyltrisulfane, 1-(1-(methylthio)propyl)-2-propyldisulfane, (Z)-1-(1-propenyldithio)propyl disulfide, dipropyl trisulfide, and methyl 1-(1-propenylthio)propyl disulfide were lost from all samples after storage.