The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins, electromagnetic moments and the ionization potential of the actinides has been extended to the late actinides in recent years. In particular, laser spectroscopy and mass spectrometry have reached the region of heavy actinides that can only be produced only at accelerator facilities. The new results provide deeper insight into the impact of relativistic effects on the atomic structure and the evolution of nuclear shell effects around the deformed neutron shell closure at N = 152. All these experimental activities have also opened the door to extend such measurements to the transactinide elements in the near future. This contribution summarizes recent achievements in Penning trap mass spectrometry and laser spectroscopy of the late actinides and addresses future perspectives.