The imperative for swift and intelligent decision making in production scheduling has intensified in recent years. Deep reinforcement learning, akin to human cognitive processes, has heralded advancements in complex decision making and has found applicability in the production scheduling domain. Yet, its deployment in industrial settings is marred by large state spaces, protracted training times, and challenging convergence, necessitating a more efficacious approach. Addressing these concerns, this paper introduces an innovative, accelerated deep reinforcement learning framework—VSCS (Variational Autoencoder for State Compression in Soft Actor–Critic). The framework adeptly employs a variational autoencoder (VAE) to condense the expansive high-dimensional state space into a tractable low-dimensional feature space, subsequently leveraging these features to refine policy learning and augment the policy network’s performance and training efficacy. Furthermore, a novel methodology to ascertain the optimal dimensionality of these low-dimensional features is presented, integrating feature reconstruction similarity with visual analysis to facilitate informed dimensionality selection. This approach, rigorously validated within the realm of crude oil scheduling, demonstrates significant improvements over traditional methods. Notably, the convergence rate of the proposed VSCS method shows a remarkable increase of 77.5%, coupled with an 89.3% enhancement in the reward and punishment values. Furthermore, this method substantiates the robustness and appropriateness of the chosen feature dimensions.