The occlusion problem is very common in pedestrian retrieval scenarios. When persons are occluded by various obstacles, the noise caused by the occluded area greatly affects the retrieval results. However, many previous pedestrian re-identification (Re-ID) methods ignore this problem. To solve it, we propose a semantic-guided alignment model that uses image semantic information to separate useful information from occlusion noise. In the image preprocessing phase, we use a human semantic parsing network to generate probability maps. These maps show which regions of images are occluded, and the model automatically crops images to preserve the visible parts. In the construction phase, we fuse the probability maps with the global features of the image, and semantic information guides the model to focus on visible human regions and extract local features. During the matching process, we propose a measurement strategy that only calculates the distance of public areas (visible human areas on both images) between images, thereby suppressing the spatial misalignment caused by non-public areas. Experimental results on a series of public datasets confirm that our method outperforms previous occluded Re-ID methods, and it achieves top performance in the holistic Re-ID problem.