Background
Regulating crosstalk between anoikis and survival signaling pathways is crucial to regulating tissue processes and mitigating diseases like cancer. Previously, we showed that anoikis activates a CD95/Fas-mediated signaling pathway regulated by receptor-interacting protein (RIP), a kinase that shuttles between Fas-mediated cell death and integrin/FAK-mediated survival pathways. Since sirtuin-3 (SIRT3), an NAD-dependent deacetylase, is known to regulate cell survival, metabolism, and tumorigenesis, we hypothesized that SIRT3 might engage in crosstalk with Fas/RIP/integrin/FAK survival-death pathways in cancer cell systems.
Methods
Using immunohistochemical staining, immunoblotting, human tissue microarrays, and overexpression and suppression approaches in vitro and in vivo we examined the roles of RIP and SIRT3 in oral squamous cell carcinoma (OSCC) anoikis resistance and tumorigenesis.
Results
RIP and SIRT3 have an opposite expression profile in OSCC cells and tissues. Stable suppression of RIP enhances SIRT3 levels, whereas, stable suppression of SIRT3 does not impact RIP levels in OSCC cells. As OSCC cells become anoikis-resistant they form multicellular aggregates or oraspheres in suspension conditions, and their expression of SIRT3 increases as their RIP expression decreases. Also, anoikis-resistant OSCC cells with higher SIRT3 and low RIP expression induce an increased tumor burden and incidence in mice unlike their adherent OSCC cell counterparts. Furthermore, stable suppression of SIRT3 inhibits anoikis resistance and reduces tumor incidence.
Conclusion
RIP is a likely upstream negative regulator of SIRT3 in anoikis resistance, and an anoikis-resistant orasphere phenotype defined by higher SIRT3 and low RIP expression contributes to a more aggressive phenotype in OSCC development.