Substrate-bound and soluble factors regulate neurite outgrowth and synapse formation during development, regeneration, and learning and memory. We report that sheath cells from CNS connectives and arterial cells from the anterior aorta of the sea slug, Aplysia californica, enhance neurite outgrowth from co-cultured Aplysia neurons. Sheath and arterial cell cultures contain several cell types, including fibrocytes, myocytes, and amoebocytes. When compared to controls (neurons with defined growth medium alone), the percentage of neurons with growth and the average neurite lengths are significantly enhanced by sheath and arterial cells at 48 h after plating of the neurons; these parameters are comparable to those of neurons cultured in medium containing hemolymph. Our results indicate that sheath cells produce substrate-bound factor(s) and arterial cells produce diffusible factor(s) that promote growth. These growth factors likely promote neuron survival and neurite outgrowth during neural plasticity exhibited in the adult CNS.