Plum pox virus (PPV), the causative agent of sharka disease in Prunoideae, is one of the most serious problems affecting stone fruit production in Europe and America. Resistance to PPV was previously described in a Prunus davidiana clone, P1908, and introduced into peach (Prunus persica) genotypes. Genetic resistance to PPV displays a complex pattern of quantitative inheritance. An analysis of quantitative trait loci (QTLs) for resistance was performed on an F1 interspecific peach population obtained from a cross between the susceptible nectarine cultivar Summergrand and P. davidiana. The hybrids were graft-inoculated with PPV in duplicate following a classical procedure. The incidence of infection was evaluated four times, over two vegetative cycles, by symptom observation and enzyme-linked immunoadsorbent assays (ELISA). Restriction of systemic downward movement of the PPV virus was also evaluated by testing the susceptible rootstocks. Using both analysis of variance and non-parametric tests, six genomic regions involved in PPV resistance were detected. Depending on the scoring data considered, between 22 and 51% of the phenotypic variance could be explained by the quantitative model. One QTL, located in the distal region of linkage group 1, maps in a genomic region that is syntenic to the location of a resistance gene previously identified in the apricot cv. Goldrich. Some QTLs appeared to be temporally specific, reflecting the environmental dependence of PPV-resistance scoring. Candidate gene fragments were amplified by PCR, isolated and mapped on the peach interspecific linkage map. We report here the co-localization of three analogues of virus resistance genes with two distinct genomic regions linked to PPV resistance in P. davidiana.