Groundwater resource management requires understanding the groundwater basin’s hydrogeology and would be improved with the development of a three-dimensional hydrogeologic framework model (HFM). A wide range of methods and software exist to quantify the extent, structure, and properties of geologic systems. However, most geologic software is proprietary and cost-prohibitive for use in developing countries. GemPy is a Python-based, open-source (no-cost) tool for generating three-dimensional geological models. This study uses available data and GemPy to develop the Kobo Valley Hydrogeologic Framework Model (KV-HFM), a three-dimensional HFM for Kobo Valley in northern Ethiopia, which is part of the East African Rift System. The KV-HFM is a conceptual model that comprises the hydrostratigraphy, structural features, and hydraulic properties of the Kobo Valley groundwater system. The limited data described the extent and altitude of the hydrostratigraphic units using the GemPy implicit potential–field interpolation. The KV-HFM showed the existence of an east-to-west, structural-based groundwater divide composed of volcanic rock and clay. This divide splits the catchment into two groundwater systems with limited interconnected flow. This study illustrates the use of open-source software for developing an HFM using sparse, existing geologic data.