Depolymerizing lignin, the complex phenolic polymer fortifying plant cell walls, is an essential but challenging starting point for the lignocellulosics industries. The variety of ether-and carbon-carbon interunit linkages produced via radical coupling during lignification limit chemical and biological depolymerization efficiency. In an ancient fungus-cultivating termite system, we reveal unprecedentedly rapid lignin depolymerization and degradation by combining laboratory feeding experiments, lignocellulosic compositional measurements, electron microscopy, 2D-NMR, and thermochemolysis. In a gut transit time of under 3.5 h, in young worker termites, poplar lignin sidechains are extensively cleaved and the polymer is significantly depleted, leaving a residue almost completely devoid of various condensed units that are traditionally recognized to be the most recalcitrant. Subsequently, the fungus-comb microbiome preferentially uses xylose and cleaves polysaccharides, thus facilitating final utilization of easily digestible oligosaccharides by old worker termites. This complementary symbiotic pretreatment process in the fungus-growing termite symbiosis reveals a previously unappreciated natural system for efficient lignocellulose degradation.ignin is a heterogeneous plant cell wall polymer derived primarily from hydroxycinnamyl alcohols via combinatorial radical coupling reactions (1). Its depolymerization is challenging, making lignin a major barrier to gaining access to stored energy within lignocellulosic materials (2). Woody biomass, such as that contained in pine and poplar trees, represents the most abundant renewable energy resource in our terrestrial ecosystems. Because of a high content of lignin, a complex polymer that contains ether-and carbon-carbon linkages between monomerderived units (1, 3), biotechnological efforts to use this material for bioenergy require expensive chemical, physical, or biological pretreatment processes to partially delignify lignocellulose to allow access to plant polysaccharides (2).Termites are remarkably efficient at degrading woody biomass (4). Within hours, they digest 74-99% of cellulose and 65-87% of hemicellulose, leaving the lignin-rich residues as feces; that is, they process far more efficiently than other herbivores that can digest the less-lignified forages, such as grasses, leaves, and forest litter (5). Among termites, the subfamily Macrotermitinae form a monophyletic group of diverse species that originated in Africa and have cultivated specialized fungi (Termitomyces spp.) in their nests using woody or litter-based biomass for about 31 million years, and are able to almost completely decompose lignocellulose (6, 7). These termites enable the consumption of more than 90% of dead plant tissues in some arid tropical areas (7,8), and thus play central ecological roles in Old World (sub)tropical carbon cycling ( Fig. 1 A and B) (8). Throughout their evolutionary history, fungus-cultivating termites have evolved in mutualistic association with multiple microbial symbi...