Background
We recently reported that CSF phosphorylated tau (p-Tau181) relative to Aβ40 (CSF p-Tau/Aβ40 ratio) was less noisy and increased associations with Alzheimer’s disease (AD) biomarkers compared to CSF p-Tau181 alone. While elevations of CSF p-Tau/Aβ40 can occur in amyloid-β (Aβ) negative (Aβ-) individuals, the factors associated with these elevations and their role in neurodegeneration and cognitive decline are unknown. We aim to explore factors associated with elevated tau in CSF, and how these elevated tau are related to neurodegeneration and cognitive decline in the absence of Aβ positivity.
Methods
We examined relationships between CSF p-Tau/Aβ40, and CSF Aβ42/Aβ40, Aβ PET, and white matter hyperintensities (WMH) as well as vascular risk factors in 149 cognitively unimpaired and 52 impaired individuals who were presumably not on the Alzheimer’s disease (AD) pathway due to negative Aβ status on both CSF and PET. Subgroups had 18F-fluorodeoxyglucose (FDG) PET and adjusted hippocampal volume (aHCV), and longitudinal measures of CSF, aHCV, FDG PET, and cognition data, so we examined CSF p-Tau/Aβ40 associations with these measures as well.
Results
Elevated CSF p-Tau/Aβ40 was associated with older age, male sex, greater WMH, and hypertension as well as a pattern of hippocampal atrophy and temporoparietal hypometabolism characteristic of AD. Lower CSF Aβ42/Aβ40, higher WMH, and hypertension but not age, sex, Aβ PET, APOE-ε4 status, body mass index, smoking, and hyperlipidemia at baseline predicted CSF p-Tau/Aβ40 increases over approximately 5 years of follow-up. The relationship between CSF p-Tau/Aβ40 and subsequent cognitive decline was partially or fully explained by neurodegenerative measurements.
Conclusions
These data provide surprising clues as to the etiology and significance of tau pathology in the absence of Aβ. It seems likely that, in addition to age, both cerebrovascular disease and subthreshold levels of Aβ are related to this tau accumulation. Crucially, this phenotype of CSF tau elevation in amyloid-negative individuals share features with AD such as a pattern of metabolic decline and regional brain atrophy.