Mesenchymal stromal cells (MSC) have essential functions in building and supporting the tumour microenvironment, providing metastatic niches, and maintaining cancer hallmarks, and it is increasingly evident that the study of the role of MSC in cancer is crucial for paving the way to clinical opportunities for novel anti-cancer therapies. To date, the vast majority of preclinical models that have been used for studying the effect of reactive MSC on cancer growth, metastasis, and response to therapy has been mainly based on
in vitro
flat biology, including the co-culturing with cell compartmentalization or with cell-to-cell contact, and on
in vivo
cancer models with different routes of MSC inoculation. More complex
in vitro
3D models based on spheroid structures that are formed by intermingled MSC and tumour cells are also capturing the interest in cancer research. These are innovative culture systems tailored on the specific tumour type and that can be combined with a synthetic extracellular matrix, or included in
in silico
technologies, to more properly mimic the
in vivo
biological, spatial, biochemical, and biophysical features of tumour tissues. In this review, we summarized the most popular and currently available preclinical models for evaluating the role of MSC in cancer and their specific suitability, for example, in assaying the MSC-driven induction of epithelial-to-mesenchymal transition or of stem-like traits in cancer cells. Finally, we enlightened the need to carefully consider those parameters that might unintentionally strongly affect the secretome in MSC-cancer interplay and introduce confounding variables for the interpretation of results.