The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene had been isolated as an antagonist to RAS signaling; however, the mechanism of its action is not clear. In this study, the effect of loss of RECK function was assessed in various ways and cell systems. Successive cell cultivation of mouse embryonic fibroblasts (MEFs) according to 3T3 protocol revealed that the germline knockout of RECK confers accelerated cell proliferation and early escape from cellular senescence associated with downregulation of p19Arf , Trp53 and p21
Cdkn1a. In contrast, short hairpin RNA-mediated depletion of RECK induced irreversible growth arrest along with several features of the Arf, Trp53 and Cdkn1a-dependent cellular senescence. Within 2 days of RECK depletion, we observed a transient increase in protein kinase B (AKT) and extracellular signal-regulated kinase (ERK) phosphorylation associated with an upregulated expression of cyclin D1, p19 Arf , Trp53, p21Cdkn1a and Sprouty 2. On further cultivation, RAS, AKT and ERK activities were then downregulated to a level lower than control, indicating that RECK depletion leads to a negative feedback to RAS signaling and subsequent cellular senescence. In addition, we observed that epidermal growth factor receptor (EGFR) activity was transiently upregulated by RECK depletion in MEFs, and continuously downregulated by RECK overexpression in colon cancer cells. These findings indicate that RECK is a novel modulator of EGFR signaling.