“…The application of ML methods to study data from human movements and activities to detect and understand these activities are referred to as human activity recognition (HAR). In recent years, many ML and deep learning-based models have been used along with wearable sensors in the assessment of human movement activities in many domains including: health [ 11 ], recreation activities [ 12 ], musculoskeletal injuries or diseases [ 13 ], day-to-day routine activities (e.g., walking, jogging, running, sitting, drinking, watching TV) [ 11 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ], sporting movements [ 22 ] and exercises [ 23 , 24 , 25 , 26 , 27 ]. The ML models used for exercise recognition have predominantly used multiple wearable sensors [ 28 , 29 , 30 , 31 ], specifically in the areas of free weight exercise monitoring [ 32 ], the performance of lunge evaluation [ 24 ], limb movement rehabilitation [ 33 ], intensity recognition in strength training [ 34 ], exercise feedback [ 24 ], qualitative evaluation of human movements [ 28 ], gym activity monitoring [ 29 ], rehabilitation [ 23 , 25 , 33 , 35 ] and indoor-based exercises for strength training [ 36 ].…”