Summary.A remarkable achievement of the perceptual system is its scene analysis capability, which involves two basic perceptual processes: the segmentation of a scene into a set of coherent patterns (objects) and the recognition of memorized ones. Although the perceptual system performs scene analysis with apparent ease, computational scene analysis remains a tremendous challenge as foreseen by Frank Rosenblatt. This chapter discusses scene analysis in the field of computational intelligence, particularly visual and auditory scene analysis. The chapter first addresses the question of the goal of computational scene analysis. A main reason why scene analysis is difficult in computational intelligence is the binding problem, which refers to how a collection of features comprising an object in a scene is represented in a neural network. In this context, temporal correlation theory is introduced as a biologically plausible representation for addressing the binding problem. The LEGION network lays a computational foundation for oscillatory correlation, which is a special form of temporal correlation. Recent results on visual and auditory scene analysis are described in the oscillatory correlation framework, with emphasis on real-world scenes. Also discussed are the issues of attention, feature-based versus model-based analysis, and representation versus learning. Finally, the chapter points out that the time dimension and David Marr's framework for understanding perception are essential for computational scene analysis.