Zika virus (ZIKV) is an arthropod-borne enveloped virus belonging to the Flavivirus genus in the family Flaviviridae, which also includes the human pathogenic yellow fever, dengue, West Nile and tick-borne encephalitis viruses 1 . Flaviviruses have two structural glycoproteins, prM and E (for precursor membrane and envelope proteins, respectively), which form a heterodimer in the endoplasmic reticulum (ER) of the infected cell and drive the budding of spiky immature virions into the ER lumen. These particles transit through the cellular secretory pathway, during which the trans-Golgi-resident protease furin cleaves prM. This processing is required for infectivity, and results in the loss of a large fragment of prM and reorganization of E on the virion surface. The mature particles have a smooth aspect, with 90 E dimers organized with icosahedral symmetry in a 'herringbone' pattern 2,3 .Three-dimensional cryo-electron microscopy (cryo-EM) structures of the mature ZIKV particles have recently been reported to near atomic resolution (3.8 Å) 4,5 , showing that the virus has essentially the same organization as the other flaviviruses of known structure, such as dengue virus (DENV) 3 and West Nile virus 6,7 . The E protein is about 500 amino acids long, with the 400 N-terminal residues forming the ectodomain essentially folded as β-sheets with three domains, named I, II and III, aligned in a row with domain I at the centre. The conserved fusion loop is at the distal end of the rod in domain II, buried at the E dimer interface. At the C terminus, the E ectodomain is followed by the 'stem' , featuring two α-helices lying flat on the viral membrane (the stem helices), which link to two C-terminal transmembrane α-helices. The main distinguishing feature of the ZIKV virion is an insertion within a glycosylated loop of E (the '150' loop), which protrudes from the mature virion surface 4,5 .Flaviviruses have been grouped into serocomplexes based on cross-neutralization studies with polyclonal immune sera 8 . The E protein is the main target of neutralizing antibodies, and is also the viral fusogen; cleavage of prM allows E to respond to the endosomal pH by undergoing a large-scale conformational change that catalyses membrane fusion and releases the viral genome into the cyotosol. Loss of the precursor fragment of prM lets the E protein fluctuate from its tight packing at the surface of the virion, transiently exposing otherwise buried surfaces. One surface exposed by this 'breathing' is the fusionloop epitope (FLE), which is a dominant cross-reactive antigenic site 9 . Although antibodies to this site can protect by complement-mediated mechanisms, as shown in a mouse model for West Nile virus 10 , they are poorly neutralizing and lead to antibody-dependent enhancement 11-15 , thereby aggravating Flavivirus pathogenesis and complicating the development of safe and effective vaccines.We recently reported the functional and structural characterization of a panel of antibodies isolated from patients with dengue disease 13,16 . ...