Distribution system fault signals contain severe noise components. In order to solve the problem of distribution network fault-line selection, a fault-line selection method based on modifying the Improved Complete Ensemble Empirical Mode Decomposition Adaptive Noise (MICEEMDAN) algorithm, Recurrence Plot, and Yolov5 network is proposed. First, ICEEMDAN is optimized using multi-scale weighted permutation entropy (MWPE). MICEEMDAN can decompose an electrical signal into a series of intrinsic mode functions (IMFs). Recurrence Plot transformation of all IMFs, obtained from decomposition and stitching from top to bottom, realizes the conversion of 1D time series to 2D images. Then, the recurrence maps obtained from all lines in the distribution network are stitched to obtain the distribution network recurrence map, realizing the mining of the fault-signal features of the whole distribution network. Finally, the Yolov5 network is used to mine the fault features of the recurrence map of the distribution network autonomously to realize the fault-line selection. The experiments show that the method has a good noise immunity and 99.98% fault-selection accuracy, which can effectively complete the distribution network fault selection.