2023
DOI: 10.1016/j.measurement.2022.112273
|View full text |Cite
|
Sign up to set email alerts
|

Recognition of gangues from color images using convolutional neural networks with attention mechanism

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
3
0
1

Year Published

2023
2023
2025
2025

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 57 publications
0
3
0
1
Order By: Relevance
“…Dari hasil kompilasi data yang dilakukan terhadap review studi ini, sumber data yang digunakan untuk identifikasi Batubara dan gangue dapat dikategorikan menjadi 5 sumber data, yaitu data optik, data multispectral, data thermal, sinar X & Gamma dan data dielectric. Data optik adalah kategori data citra yang bersumber dari spektrum cahaya tampak dan dapat berupa data grayscale (Hou, W., 2019;Liu, K., 2018), data warna (Liu, H., 2023), tekstur dan geometri (Li, M. et al, 2020). Data multispectral adalah data yang diambil dari beberapa spektrum yang berbeda (Hu, F. et al, 2022).…”
Section: Sumber Dataunclassified
“…Dari hasil kompilasi data yang dilakukan terhadap review studi ini, sumber data yang digunakan untuk identifikasi Batubara dan gangue dapat dikategorikan menjadi 5 sumber data, yaitu data optik, data multispectral, data thermal, sinar X & Gamma dan data dielectric. Data optik adalah kategori data citra yang bersumber dari spektrum cahaya tampak dan dapat berupa data grayscale (Hou, W., 2019;Liu, K., 2018), data warna (Liu, H., 2023), tekstur dan geometri (Li, M. et al, 2020). Data multispectral adalah data yang diambil dari beberapa spektrum yang berbeda (Hu, F. et al, 2022).…”
Section: Sumber Dataunclassified
“…In contrast, a convolutional neural network can automatically extract high-level features of images and respond quickly. This method is least affected by external unfavorable factors and is more conducive to achieving accurate and rapid coal gangue recognition. …”
Section: Introductionmentioning
confidence: 99%
“…This method is least affected by external unfavorable factors and is more conducive to achieving accurate and rapid coal gangue recognition. 21 23 …”
Section: Introductionmentioning
confidence: 99%
“…The study found that in most cases, channel attention contributes more to the model's performance than spatial attention. Reference [10] introduced a novel attention mechanism inspired by the human visual system, named Patch Attention, and used this attention mechanism to improve convolutional neural networks, significantly enhancing the model's recognition performance on color images. The superiority and effectiveness of the above two improvement methods have been validated in the research achievements of many scholars.…”
mentioning
confidence: 99%