Membrane inlet mass spectrometry (MIMS) provides detailed measures of dissolved 28,29,30N2, O2, and argon (Ar) for estimating important gas fluxes and concentrations in aquatic ecosystems. Previous studies demonstrated a large O2 scavenging effect while using a MIMS, where varying concentrations of O2 can affect measured N2 : Ar because O2 interacts with N2 in the ion source to produce NO+ (m/z = 30), potentially decreasing the detected current for 28,29N2 and increasing the detected current for 30N2. A common solution is to use a muffle furnace heated to 600°C with a copper reduction column to reduce the concentration of O2 to minimal levels and accurately measure 28,29,30N2. However, this solution eliminates the detection of O2 in environmental samples, which is a major benefit of using a MIMS. We questioned whether the MIMS was sensitive enough to provide accurate O2 estimates when using the furnace and whether the O2 scavenging effect was real and consistent among MIMS. We conducted four separate experiments on three different MIMS to test the O2 scavenging effect and the potential detection of O2 when using a MIMS with furnace. The furnace removed ~ 99% of O2, and O2 scavenging had little to no detectable effect on N2 : Ar and an unclear effect on 29N2 : 28N2, but increased 30N2 : 28N2. In most cases, accurate O2 data could be retrieved despite using the furnace. The need for O2 reduction may be limited to measuring accurate 30N2 : 28N2 in isotope pairing studies, but without substantial loss of MIMS measurements used to describe O2 dynamics.