During the COVID-19 epidemic, the incidence of rabies has increased in several countries, especially in remote and disadvantaged areas, due to inadequate surveillance and declining immunization coverage. Multiple vaccinations with inactivated rabies virus vaccines for pre- or post-exposure prophylaxis are considered inefficient, expensive and impractical in developing countries. Herein, three modified human recombinant adenoviruses type 5 designated Adv-RVG, Adv-E1-RVG, and Adv-RVDG, carrying rabies virus G (RVG) expression cassettes in various combinations within
E1
or
E3
genomic regions, were constructed to serve as rabies vaccine candidates. Adv-RVDG mediated greater RVG expression both
in vitro
and
in vivo
and induced a more robust and durable humoral immune response than the rabies vaccine strain SAD-L16, Adv-RVG, and Adv-E1-RVG by more effectively activating the dendritic cells (DCs) – follicular helper T (Tfh) cells – germinal centre (GC) / memory B cells (MBCs) – long-lived plasma cells (LLPCs) axis with 100% survival after a lethal RABV challenge in mice during the 24-week study period. Similarly, dogs and cats immunized with Adv-RVDG showed stronger and longer-lasting antibody responses than those vaccinated with a commercial inactivated rabies vaccine and showed good tolerance to Adv-RVDG. In conclusion, our study demonstrated that simultaneous insertion of protective antigens into the
E1
and
E3
genomic regions of adenovirus vector can significantly enhance the immunogenicity of adenoviral-vectored vaccines, providing a theoretical and practical basis for the subsequent development of multivalent and multi-conjugated vaccines using recombinant adenovirus platform. Meanwhile, our data suggest Adv-RVDG is a safe, efficient, and economical vaccine for mass-coverage immunization.