The genus Henipavirus contains two members-Hendra virus (HeV) and Nipah virus (NiV)-and each can cause fatal disease in humans and animals. HeV and Niv are currently classified as biosafety level 4, and NiV is classified as a category C priority pathogen. The aim of this article is to discuss the pathology of laboratory animal models of henipavirus infection and to assess their suitability as animal models for the development and testing of human therapeutics and vaccines. There has been considerable progress in the development of animal models for henipavirus disease. Suitable animal models include the golden hamster, ferrets, cats, and pigs, which develop disease resembling that observed in humans. Guinea pigs are a less reliable model for henipavirus disease, but they do develop henipavirus-induced encephalitis. Because human efficacy studies with henipaviruses are not permitted, animal studies are critical for the development of antiviral therapeutics and vaccines. Current research indicates that passive immunotherapy using monoclonal antibodies is protective of ferrets against NiV infection and that passive immunotherapy using NiV antibodies protects hamsters from HeV. Recombinant vaccines have been used to protect cats and pigs against NiV infection. Ribavirin and 6-aza-uridine were able to delay but not prevent NiV-induced mortality in hamsters. Further research is needed to develop a model and therapy for late-onset henipavirus encephalitis.