The rapid progress in the understanding the molecular biology of cancer cells has made a large impact on the design and development of novel therapeutic strategies. These have been developed because treatment of cancer by chemotherapy is limited by a number of factors, and usually fails in patients whose malignant cells are not sufficiently different from normal cells in their growth and metabolism. Other limiting factors are the low therapeutic index of most chemotherapeutic agents, the emergence of drug-resistant populations, tumor heterogeneity and the presence of metastatic disease.The concept of targeted cancer therapy is thus an important means to improve the therapeutic potential of anticancer agents and a lead to the development of novel approaches such as immunotherapy. The approach of cancer immunotherapy and targeted cancer therapy combines rational drug design with the current advances in our understanding of cancer biology [1±4]. This approach takes advantage of some special properties of cancer cells ± many of them contain mutant or over-expressed oncogenes on their surface and these proteins are attractive antigens for targeted therapy. The first cell surface receptor to be linked to cancer was the epidermal growth factor (EGF) receptor present in lung, brain, kidney, bladder, breast and ovarian cancer [5, 6]. Several other members of the EGF receptor family, i. e. erbB2, erbB3 and erbB4 receptors, appear to be abundant on breast and ovary tumors, and erbB2, for example, is the target for phase I and II immunotherapy clinical trials [7, 8].Other promising candidates for targeted therapy are differentiation antigens that are expressed on the surface of mature cells, but not on the immature stem cells. The most widely studied examples of differentiation antigens currently being used for targeted therapy are expressed by hematopoietic malignancies, and include CD19, CD20 and CD22 on B cell lymphomas and leukemias, and the interleukin (IL-)-2 receptor on T cell leukemias [9±11]. Differentiation antigens have also been found on ovarian, breast and prostate cancer [12±14].Another class of antigen, termed tumor-associated antigens (TAAs), is made up of molecules which are tightly bound to the surface of cancer cells and are associated with the transformed cancer cells. An example is the carbohydrate antigen Lewis Y 347 Cancer Immune Therapie: Current and Future Strategies Edited by G. Stuhler and P. Walden