2022
DOI: 10.1155/2022/9080818
|View full text |Cite|
|
Sign up to set email alerts
|

Recommendation Model of Tourist Attractions Based on Deep Learning

Abstract: In order to solve the problem of tourism information overload caused by the rapid development of tourism and the Internet era, the author proposes a tourist attraction recommendation model based on deep learning. Convolutional Neural Network (CNN) is used to extract the sentiment of text comments, the Pearson similarity formula is used to calculate similar user groups, and the mean absolute error (MAE) is used to evaluate the resulting error. Compare with traditional collaborative filtering methods. Experiment… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance