2015
DOI: 10.1016/j.eij.2015.06.005
|View full text |Cite
|
Sign up to set email alerts
|

Recommendation systems: Principles, methods and evaluation

Abstract: On the Internet, where the number of choices is overwhelming, there is need to filter, prioritize and efficiently deliver relevant information in order to alleviate the problem of information overload, which has created a potential problem to many Internet users. Recommender systems solve this problem by searching through large volume of dynamically generated information to provide users with personalized content and services. This paper explores the different characteristics and potentials of different predic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
514
0
46

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 1,044 publications
(560 citation statements)
references
References 65 publications
0
514
0
46
Order By: Relevance
“…Isinkaye et al [4] explore the different characteristics and potential of the different prediction technique in recommendation technique. In this work, they have further added different phases of recommendation to predict an item.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Isinkaye et al [4] explore the different characteristics and potential of the different prediction technique in recommendation technique. In this work, they have further added different phases of recommendation to predict an item.…”
Section: Literature Reviewmentioning
confidence: 99%
“…It is explained as follows 1) Measurement of Trust: Trust-ability is the degree of trust between users. The primary task is to manage quantitatively trust relationship before trust factors introduced to the collaborative filtering recommendation method [4], as thus to use in the calculation formula.…”
Section: International Journal For Research In Applied Science and Engimentioning
confidence: 99%
“…Як свідчить проведений аналіз, методи, що найчастіше використовуються при створенні рекомендаційних систем, можна поділити на дві групи: колаборативний (collaborative) та контент-ний (content-based) [11,17,20,23,24]. Крім того, у [17,20,25] розглядається інший метод, що базує-ться на апріорному знанні потреб користувача (knowledge-based), а також його різновид, який відокремився у самостійний метод -рекомендації на основі онтології (ontology-based).…”
Section: дослідження особливостей апаратно-програмних платформunclassified