2022
DOI: 10.1038/s41598-022-11386-3
|View full text |Cite
|
Sign up to set email alerts
|

Reconfigurable fiber-to-waveguide coupling module enabled by phase-change material incorporated switchable directional couplers

Abstract: In silicon photonics, grating-assisted fiber-to-waveguide couplers provide out-of-plane coupling to facilitate wafer-level testing; however, their limited bandwidth and efficiency restrict their use in broadband applications. Alternatively, end-fire couplers overcome these constraints but require a dicing process prior usage, which makes them unsuitable for wafer-level testing. To address this trade-off, a reconfigurable fiber-to-waveguide coupling module is proposed and designed to allow for both grating-assi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
2

Relationship

1
1

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 27 publications
0
1
0
Order By: Relevance
“…Similarly, diverse time domain mathematical approaches, i.e., Finite Difference Time Domain (FDTD) [7], Coupling method [8], Finite Integral Time Domain (FITD) [9], Plane Wave Expansion (PWE) [10], along with frequency domain methods such as the Finite Elements Method (FEM) [11], Method of Moments [12], Transfer Matric Method (TMM) [13] and Fast Multi-pole Method (FMM) [14], are being used to design these components. Mainly dielectrics and semiconductors have been utilized for the design of optical components, which in turn can be modified into different forms to achieve various functionalities, such as optical waveguides [15], directional couplers [16] and Photonic Crystals (PhCs) [17]. By definition, PhCs are dielectric material-based nanostructures that are capable of controlling light at the wavelength scale.…”
Section: Introductionmentioning
confidence: 99%
“…Similarly, diverse time domain mathematical approaches, i.e., Finite Difference Time Domain (FDTD) [7], Coupling method [8], Finite Integral Time Domain (FITD) [9], Plane Wave Expansion (PWE) [10], along with frequency domain methods such as the Finite Elements Method (FEM) [11], Method of Moments [12], Transfer Matric Method (TMM) [13] and Fast Multi-pole Method (FMM) [14], are being used to design these components. Mainly dielectrics and semiconductors have been utilized for the design of optical components, which in turn can be modified into different forms to achieve various functionalities, such as optical waveguides [15], directional couplers [16] and Photonic Crystals (PhCs) [17]. By definition, PhCs are dielectric material-based nanostructures that are capable of controlling light at the wavelength scale.…”
Section: Introductionmentioning
confidence: 99%