Reconfigurable intelligent surfaces (RISs) have received considerable attention as a key enabler for envisioned 6G networks, for the purpose of improving the network capacity, coverage, efficiency, and security with low energy consumption and low hardware cost. However, integrating RISs into the existing infrastructure greatly increases the network management complexity, especially for controlling a significant number of RIS elements. To unleash the full potential of RISs, efficient optimization approaches are of great importance. This work provides a comprehensive survey on optimization techniques for RISaided wireless communications, including model-based, heuristic, and machine learning (ML) algorithms. In particular, we first summarize the problem formulations in the literature with diverse objectives and constraints, e.g., sum-rate maximization, power minimization, and imperfect channel state information constraints. Then, we introduce model-based algorithms that have been used in the literature, such as alternating optimization, the majorization-minimization method, and successive convex approximation. Next, heuristic optimization is discussed, which applies heuristic rules for obtaining low-complexity solutions. Moreover, we present state-of-the-art ML algorithms and applications towards RISs, i.e., supervised and unsupervised learning, reinforcement learning, federated learning, graph learning, transfer learning, and hierarchical learning-based approaches. Modelbased, heuristic, and ML approaches are compared in terms of stability, robustness, optimality and so on, providing a systematic understanding of these techniques. Finally, we highlight RISaided applications towards 6G networks and identify future challenges.