The neuroanatomy of the ileocecal valve (ICV) is poorly understood. A better understanding of this important functional component of the gastrointestinal tract would enable surgeons to reconstruct an effective valve following surgical resection of the ICV. ICVs were examined in young pigs (N 5 5) using frontal and transverse paraffin embedded and frozen sections. Hematoxylin1Eosin (H1E) staining, acetylcholinesterase (AchE), and NADPH-diaphorase (NADPH-d) histochemistry and protein gene product 9.5 (PGP 9.5) and C-kit immunohistochemistry were performed. The H1E staining revealed that the ICV consists of three muscle layers: an external circular muscle layer continuous with that of the ileal circular muscle layer, an inner circular muscle layer continuous with that of the cecal circular muscle layer, and a single longitudinal muscle layer, which appears to be secondary to a fusion of the ileal and cecal longitudinal muscle layers. The AchE, NADPH-d, and PGP 9.5 staining revealed two distinct coaxial myenteric plexuses, together with superficial and deep submucosal plexuses. The C-kit immunostaining showed a continuous myenteric ICC network within the ICV. The structure of the neuromuscular components within the ICV suggests that the valve is a result of a simple intussusception of the terminal ileum into the cecum. This knowledge may help surgeons in their future attempts at reconstructing more anatomically and functionally suitable ICVs following surgical resection of native ICVs.