Animal-cap cells isolated from Xenopus laevis morulae and blastulae are cultured for 2 to 6 hr in medium containing nocodazole, Colcemid or taxol, at concentrations completely inhibiting cell division. At 20°C, cells from each control embryo undergo synchronous cell cycles up to the 12th, with a period of 32 min, of which 60% represents the chromosome condensation (mitotic or M-) phase, and the average mitotic index remains near 50%. Cells treated with nocodazole, Colcemid or taxol before 12th cleavage undergo chromosome cycles with a similar period as controls, albeit without chromosome segregation, and the average mitotic index remains near 50%. From the 12th to 15th cycles, control cycles become asynchronous, their period gradually increases 2 to 3 times, and the mitotic index declines to 10%. In cells treated after 12th cleavage with taxol, the mitotic index declines, similarly to control cells. However, in nocodazoletreated cells, it increases steadily, and exceeds 70% at 2 hr of treatment, but gradually declines to 40% at 6 hr. Therefore, while inhibition of microtubule activities does not significantly alter the timing of chromosome condensation cycles during synchronous cleavage, inhibition of microtubule assembly can prolong M-phase during asynchronous cleavage after the midblastula transition.