The nucleoprotein (N) of SARS-CoV-2 encapsidates the viral genome and is essential for viral function. The central disordered domain comprises a serine-arginine-rich domain (SR) that is hyperphosphorylated in infected cells. This modification is thought to regulate function of N, although mechanistic details remain unknown. We use time-resolved NMR to follow local and long-range structural changes occurring during hyperphosphorylation by the kinases SRPK1/GSK-3/CK1, thereby identifying a conformational switch that abolishes interaction with RNA. When 8 approximately uniformly-distributed sites are phosphorylated, the SR domain competitively binds the same interface as single-stranded RNA, resulting in RNA binding inhibition. Phosphorylation by PKA does not prevent RNA binding, indicating that the pattern resulting from the physiologically-relevant kinases is specific for inhibition. Long-range contacts between the RNA-binding, linker and dimerization domains are also abrogated, phenomena possibly related to genome packaging and unpackaging. This study provides insight into recruitment of specific host kinases to regulate viral function.