As rainfall exhibits high spatiotemporal variability, accurate and real-time rainfall monitoring is vitally important in fields such as hydrometeorological research, agriculture and disaster prevention and control. Nevertheless, the current dedicated rain sensors cannot fulfill the requirement for comprehensive precipitation observation, owing to their respective limitations. Within the last two decades, the utilization of commercial microwave links (CMLs) for rainfall estimation, as an opportunistic sensing method, has generated considerable attention. Relying on CML networks deployed and maintained by mobile network operators can provide near-surface precipitation information over large areas at a low cost. Although scholars have developed several algorithms for obtaining rainfall estimates from CML data, the rainfall estimation technique based on CMLs remains challenging due to the complex effect in the microwave radiation transmission process. In this paper, we provide a comprehensive review of the technical principles, developments and workflows for this technology, alongside its application in environmental monitoring and hydrological modeling. Furthermore, this paper outlines the current challenges and future research directions, which will hopefully draw the attention of researchers and provide valuable guidance.