2019 13th International Conference on Sampling Theory and Applications (SampTA) 2019
DOI: 10.1109/sampta45681.2019.9030842
|View full text |Cite
|
Sign up to set email alerts
|

Reconstructing high-dimensional Hilbert-valued functions via compressed sensing

Abstract: We present and analyze a novel sparse polynomial technique for approximating high-dimensional Hilbert-valued functions, with application to parameterized partial differential equations (PDEs) with deterministic and stochastic inputs. Our theoretical framework treats the function approximation problem as a joint sparse recovery problem, where the set of jointly sparse vectors is possibly infinite. To achieve the simultaneous reconstruction of Hilbert-valued functions in both parametric domain and Hilbert space,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 22 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?