Abstract:We present and analyze a novel sparse polynomial technique for approximating high-dimensional Hilbert-valued functions, with application to parameterized partial differential equations (PDEs) with deterministic and stochastic inputs. Our theoretical framework treats the function approximation problem as a joint sparse recovery problem, where the set of jointly sparse vectors is possibly infinite. To achieve the simultaneous reconstruction of Hilbert-valued functions in both parametric domain and Hilbert space,… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.