The IceCube-Gen2 facility will extend the energy range of IceCube to ultra-high energies. The key component to detect neutrinos with energies above 10 PeV is a large array of in-ice radio detectors. In previous work, direction reconstruction algorithms using the forward-folding technique have been developed for both shallow ( 20 m) and deep in-ice detectors, and have also been successfully used to reconstruct cosmic rays with ARIANNA. Here, we focus on the reconstruction algorithm for the deep in-ice detector, which was recently introduced in the context of the Radio Neutrino Observatory in Greenland (RNO-G). We discuss the performance-critical aspects of the algorithm, as well as recent and future improvements, and apply it to study the performance of a station of the IceCube-Gen2 in-ice radio array. We obtain the angular resolution, which turns out to be strongly asymmetric, and use this to optimize the configuration of a single station.