2019
DOI: 10.1587/nolta.10.496
|View full text |Cite
|
Sign up to set email alerts
|

Reconstructing the Laplacian matrix to estimate social network structure by using compressed sensing

Abstract: For complex large scale networks, like social networks, it is usually impossible to observe complete information about their topology structure or link weight directly. A recent proposal, the network resonance method, can estimate the eigenvalues and eigenvectors of the Laplacian matrix for representing network structure, by using the resonance phenomena of oscillation dynamics on networks. However, it is generally not possible to observe all the eigenvalues and eigenvectors. This paper uses compressed sensing… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 18 publications
0
0
0
Order By: Relevance