Shaped demineralised bone matrices (DBM) made from cancellous bone have important uses in orthopaedic and dental procedures, where the properties of the material allow its insertion into confined defects, therefore acting as a void filler and scaffold onto which new bone can form. The sponges are often small in size, <1.0 cm(3). In this study, we report on an improved bone washing and demineralisation process that allows production of larger DBM sponges (3.375 or 8.0 cm(3)) from deceased donor bone. These sponges were taken through a series of warm water washes, some with sonication, centrifugation, 100 % ethanol and two decontamination chemical washes and optimally demineralised using 0.5 N hydrochloric acid under vacuum. Demineralisation was confirmed by quantitative measurement of calcium and qualitatively by compression. Protein and DNA removal was also determined. The DBM sponges were freeze dried before terminal sterilisation with a target dose of 25 kGy gamma irradiation whilst frozen. Samples of the sponges were examined histologically for calcium, collagen and the presence of cells. The data indicated lack of cells, absence of bone marrow and a maximum of 1.5 % residual calcium.