The paper is devoted to Descriptive Image Analysis (DA) — a leading line of the modern mathematical theory of image analysis. DA is a logically organized set of descriptive methods, mathematical objects, and models and representations aimed at analyzing and evaluating the information represented in the form of images, as well as for automating the extraction from images of knowledge and data needed for intelligent decision-making. The basic idea of DA consists of embedding all processes of analysis (processing, recognition, understanding) of images into an image formalization space and reducing it to (1) construction of models/representations/formalized descriptions of images; (2) construction of models/representations/formalized descriptions of transformations over models and representations of images. We briefly discuss the basic ideas, methodological principles, mathematical methods, objects, and components of DA and the basic results determining the current state of the art in the field. Image algebras (IA) are considered in the context of a unified language for describing mathematical objects and operations used in image analysis (the standard IA by Ritter and the descriptive IA by Gurevich).