The main subject of the paper is the description and determination of the impedance operator of a linear periodically timevarying (LPTV) one-port network in the steady-state. If the one-port network parameters and the supply vary periodically with the same period, the network reaches a periodic steady state. However, the sinusoidal supply may induce a nonsinusoidal voltage or current. It is impossible to describe such a phenomenon by means of one complex number. A periodically time-varying one-port network working in a steady-state regime can be described with a circular parametric operator. Within the domain of discrete time, such an operator takes the form of a matrix with real-valued entries. The circular parametric operator can be transformed into the frequency domain using a two-dimensional DFT. This description makes it possible to quantitatively assess LPTV system input and output harmonics aliasing. The paper also presents the derivation and the proof of convergence of an iteration scheme for the identification of circular parametric operators. The scheme may be used to determine the impedance of an LPTV one-port network. Some results of computer simulations are shown.