A new method for solving the excitation amplitude and phase of wide-band phased array antenna is presented, in which spherical wave expansion and mode filtering (SWEMF) techniques are applied for the first time. Different from the previous methods that are required of matrix inversion or optimization iteration, the proposed SWEMF method is a forward calculation process. Thus, the solution is unique, and the result is closer to the true value. On the other hand, the SWEMF method only needs the total radiated field data of the array antenna in a small angular domain to ensure that the operation is simple and efficient. The effectiveness of the SWEMF method is successfully verified by examples of low sidelobe planar and linear arrays. The mean square error of the excitation amplitude can reach −38.88 dB. The range of excitation amplitude error is 0.05 v, and the excitation phase error is within 5.2°. This method takes about 60 s to calculate amplitude and phase at any one time. The feed amplitude and phase can be only calculated with the data in a small angular domain, and when the amount of data is small.