Purpose
Cell-based therapy development for geographic atrophy (GA) in age-related macular degeneration (AMD) is hampered by the paucity of models of localized photoreceptor and retinal pigment epithelium (RPE) degeneration. We aimed to characterize the structural and functional deficits in a laser-induced nonhuman primate model, including an analysis of the choroid.
Methods
Macular laser photocoagulation was applied in four macaques. Fundus photography, optical coherence tomography (OCT), dye angiography, and OCT-angiography were conducted over 4.5 months, with histological correlation. Longitudinal changes in spatially resolved macular dysfunction were measured using multifocal electroretinography (MFERG).
Results
Lesion features, depending on laser settings, included photoreceptor layer degeneration, inner retinal sparing, skip lesions, RPE elevation, and neovascularization. The intralesional choroid was degenerated. The normalized mean MFERG amplitude within lesions was consistently lower than control regions (0.94 ± 0.35 vs. 1.10 ± 0.27,
P
= 0.032 at month 1, 0.67 ± 0.22 vs. 0.83 ± 0.15,
P
= 0.0002 at month 2, and 0.97 ± 0.31 vs. 1.20 ± 0.21,
P
< 0.0001 at month 3.5). The intertest variation of mean MFERG amplitudes in rings 1 to 5 ranged from 13.0% to 26.0% in normal eyes.
Conclusions
Laser application in this model caused localized outer retinal, RPE, and choriocapillaris loss. Localized dysfunction was apparent by MFERG in the first month after lesion induction. Correlative structure-function testing may be useful for research on the functional effects of stem cell–based therapy for GA. MFERG amplitude data should be interpreted in the context of relatively high intertest variability of the rings that correspond to the central macula. Sustained choroidal insufficiency may limit long-term subretinal graft viability in this model.