Abstract. Two giant glaciers at the Aru range, western Tibetan Plateau, collapsed suddenly on 17 July and 21 September 2016, respectively, causing fatal damage to local people and their livestock. The ice avalanches, with a total volume of 150 × 106 m3, had almost melted by September 2019. Based on in-situ observation, bathymetry survey and satellite data, here we show the impacts of the two glacier collapses on the downstream lakes, the outflow Aru Co and the terminal Memar Co, in terms of lake morphology, water level and water temperature in the subsequent four years (2016–2019). After the first glacier collapse, the ice avalanche slid into Aru Co along with a large amount of debris, which significantly modified the lake’s shoreline and bathymetry. Lake surface temperature (LST) at Aru Co and Memar Co exhibited a significant decrease of 2–4 oC in the first 1–2 weeks after the first glacier collapse due to the intruding ice into Aru Co and its melting. Memar Co significantly deepened by 12.5 m between 2000 and 2018, with accelerated lake level increase after the glacier collapses. Memar Co expanded rapidly at a rate of 0.80 m/yr between 2016 and 2019, which is about 30 % higher than the average rising rate between 2003 and 2014. The meltwater from ice avalanches was found to contribute to about 26.4 % of the increase in lake storage between 2016 and 2019. This study implies that the Aru glacier collapses had long-term and dramatic impacts on the downstream lakes.