Traditional building materials have disadvantages such as high pollution and high energy consumption, so it is particularly important to develop new environmentally friendly materials. In this paper, foamed glass-ceramics are prepared by high-temperature melting method with iron tailings, blast furnace slag, and desulfurization slag as the main raw materials, and CaCO3 as foaming agent. The effects of three kinds of basic glass scheme, the content of the foaming agent and heat treatment system on the degree of crystallization, micro-morphology, and crystal phase composition of foamed glass-ceramics are studied. The nucleation temperature and crystallization temperature of the basic glass are determined by differential thermal analysis curve to be 730 ℃ and 1000 ℃, respectively. Orthogonal experiments show that the optimal composition ratio of the prepared base glass is CaO: 22.25 wt.%, MgO: 4.57 wt.%, Al2O3: 6.19 wt.%, SiO2: 41.8 wt.%. The optimized scheme is based on a base glass prepared with 45 wt.% iron tailings, 25 wt.% blast furnace slag, and 30 wt.% desulfurization slag, added with 10% CaCO3 and sintered to 1000 °C for 3 h. The bending strength, fracture toughness, and elastic modulus are 95.73 Mpa, 53.09 Mpa·m1/2, 28023.55 Mpa, respectively.